Naperian - definizione. Che cos'è Naperian
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Naperian - definizione

MATHEMATICAL FUNCTION
Napier's logarithm; Naperian logarithm; Naperian system of logarithms
  • A plot of the Napierian logarithm for inputs between 0 and 10<sup>8</sup>.
  • The 19 degree pages from Napier's 1614 table of logarithms of trigonometric functions ''[[Mirifici Logarithmorum Canonis Descriptio]]''

Naperian      
·adj Of, pertaining to, or discovered by, Napier, or Naper.
Napierian logarithm         
[ne?'p??r??n]
¦ noun another term for natural logarithm.
Origin
C19: named after the Scottish mathematician John Napier (1550-1617).
Napierian logarithm         
The term Napierian logarithm or Naperian logarithm, named after John Napier, is often used to mean the natural logarithm. Napier did not introduce this natural logarithmic function, although it is named after him.

Wikipedia

Napierian logarithm

The term Napierian logarithm or Naperian logarithm, named after John Napier, is often used to mean the natural logarithm. Napier did not introduce this natural logarithmic function, although it is named after him. However, if it is taken to mean the "logarithms" as originally produced by Napier, it is a function given by (in terms of the modern natural logarithm):

N a p L o g ( x ) = 10 7 ln ( x / 10 7 ) {\displaystyle \mathrm {NapLog} (x)=-10^{7}\ln(x/10^{7})}

The Napierian logarithm satisfies identities quite similar to the modern logarithm, such as

N a p L o g ( x y ) N a p L o g ( x ) + N a p L o g ( y ) 161180956 {\displaystyle \mathrm {NapLog} (xy)\approx \mathrm {NapLog} (x)+\mathrm {NapLog} (y)-161180956}

or

N a p L o g ( x y / 10 7 ) = N a p L o g ( x ) + N a p L o g ( y ) {\displaystyle \mathrm {NapLog} (xy/10^{7})=\mathrm {NapLog} (x)+\mathrm {NapLog} (y)}

In Napier's 1614 Mirifici Logarithmorum Canonis Descriptio, he provides tables of logarithms of sines for 0 to 90°, where the values given (columns 3 and 5) are

N a p L o g ( θ ) = 10 7 ln ( sin ( θ ) ) {\displaystyle \mathrm {NapLog} (\theta )=-10^{7}\ln(\sin(\theta ))}